Constrained Optimization and Penalty Method

Abstract: In this topic, | will provide a brief introduction to constrained
optimization and the penalty method, which transforms the original
constrained problem into a single unconstrained problem. | will also
discuss the linearized approximation of the feasible set, which helps
derive the constraint conditions necessary for analyzing practical
optimization methods. Additionally, unlike the quadratic penalty method,
the penalty parameters in the augmented Lagrangian and exact penalty
methods do not need to be infinite. However, the exact penalty method
is non-smooth, which can be addressed by introducing artificial variables.
Meanwhile, the augmented Lagrangian method also introduces
additional slack variables when applied to constrained problems.
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» The optimal conditions of constrained optimization are more
complex than unconstrained optimization.

» Constraint conditions provide a way to update the
parameters and analysis the convergence of the optimization
method.

» Penalty method can transform the original constrained
problem into a single unconstrained problem.
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Fundamental Conceptions

» Constrained Programming

min  f(x)
st. |e(x)=gi(x) >0,i=1,--- ,m (1)
i(x) = hy(x) =0, =1, 1

Feasible Region §

> Active set: A
A(xo) = {i[ci(x0) = 0} (2)

» Feasible Direction d:

F(x9,S) ={d|xo+Ad € 5,35 > 0,V € (0,6)} (3)
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Tangent Cone

Descent direction;
D(xo, f) ={d|Vf(x0)"d < 0} (4)

Local optimal solution x:
F(x,5)ND(x,[f)=0 ()
Tangent Cone T(x,|S):

Xi — X0

T(x0|S) ={d|3m; = 0,{x;} C S, x; = x¢,s.t.d; = — d} (6)

Ti

Linear Approximation
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Tangent Cone

Equality constraint: € = {h;(xy) =0,i =1, ..., [}

hi(xo + Tdr) — hi(X0)

Vhi(x0)'d = lim =0 (7)
k— o0 Tk
mmmmm) Linearized feasible directions Lj:
Ly := L(x¢,h) = {d|Vh;(x0)'d =0,5 = 1,...,1} (8)

Active set of Inequality constraint: A(x,) = {i € {1, ..., m}|g;(x,) = 0}

Vai(xo)Td = lim £X0 T — 6ix0)
— 00 Tl

> 0,1 € A(xg) (9)

mmmmm) |inearized feasible directions Ly:

L, == L(x0,9) = {d|Vg;(x0)"d > 0,i € A(x0)} (10)
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Constraint Qualification

To ensure the equivalence of T(x,|S) and L(x,, S)

Vhi(XO),i = 1, ,l & Vg](XO),] (S cfl(XO)
are linearly independent(LICQ).

If x, satisies LICQ, it means

L(xo, h) N L(x0,9) = T(x0lg) N T(x0|h) (11)
e.g.
e aa=1—a2—(y—1)>>0
co=—-y2>0
Ves
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First-Order Optimality Conditions

If X is local optimal solution and satisfies LICQ

First-Order Necessary Conditions(KKT)

[ Stationarity Vi L(X, A 1) =0

Primal feasibility gi(X) >0,i=1,--- ,m;h;j(x)=0,7=1,--- 1.
) Complementary slackness \;g;(X) =0,i=1,---,m
| Dual feasibility N >0i=1,---.m

(12)
l
where L(x, A, 1) Z Nigi(x) + Z pihj(x)
j=1

Increase d7Vf(x*) > 0
To first-order approximation:
Keep the value d"Vf(x*) =0
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First-Order Optimality Conditions

First-Order Sufficient Conditions

For Convex Optimization:

min  f(x)
s.t. (x)<0,2=1,---,m (13)
Ax =D

and exists relative interior pointx,:

s.t. c¢i(x0) <0,i=1,2,...,m;
AXO =b (14)

KKT < Local Optimal Solution
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Second-Order Optimality Conditions

Critical Cone C(x*, A%, u*):

C(x", A", ) = {d € L(x", §)|Vgi(x*)"d = 0,¥i € A(x"),\} >0} (15)

l
dTVf(x*) =) NVgx)'d-)> umVh(x)' d=0 (16)
ieA ) =

The linearized feasible direction in this case cannot be
determined as a descending or ascending direction based on
the first-order optimality conditions.

Keep the active inequality and equality constraints invariant
when we were to make small changes to the objective
function.

We need second-order optimality conditions!
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Second-Order Optimality Conditions

» Second-Order Necessary Conditions
LICQ and KKT conditions hold,
d'VZ_L(x*, N, )d >0, Vde C(x* A\, ub). (17)

» Second-Order Sufficient Conditions

KKT conditions hold and

dTV2_ L(x*, 0 )d >0, Vd#0,de C(x*,\*, 1) (18)
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Penalty method

Constrained programming:

min  f(x)
st. ¢(x)=0,i€f (19)
ci(x) <0,jeT.
Dilemmas:
> Global optimal solution x* : Vf(x*) # 0
> X1 =Xg+AX &S

Penalty mothed:
original constrained problem = single unconstrained problem
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Quadratic Penalty

« Case 1: equality-constrained problem

Quadratic penalty function

Pe(x.0) = f(x) + %JZC?(X),VX c R (20)

1€E
where ¢ > 0 is penalty parameter.
Algorithm:
1: Given g; > 0,x,,k = 1, growth factor p > 1

2: while violate the convergence test do
3: x* = argmin Py (X, o)

X
4 choose ¢**1 = pgk.
5: k—-k+1
6.
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Quadratic Penalty

KKT:
« Primal problem:

Vf(x*)+ Z AV (x*) =0
icE

ci(x*) = 0,Vi € € (21)

 Penalty problem:

Vf(x)+ Z oc;(x)Ve(x) =0 (22)
€€
We have:
oc;(x) =~ A\ ,Vi €& (23)
means
¢i(x) =00 — (24)
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Quadratic Penalty

« Case 2: inequality-constrained problem

Pr(x,0) = f(x) + %O‘ Z([ci(x)])z,‘v’x c R" (25)

first-order derivable respect to ¢;

where

[ci(x)]” = max{c;(x),0} (26)
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Exact Penalty Methods

¢, penalty function

> L))+ Z[@(X)J] (27)

1€E =

P(x,0)=f(x)+0

Exactness:

If x* is a strict local solution of the primal programming
problem at which the KKT conditions are satisfied with
Lagrange multipliers 2;,i € £ UI. Then x* is a local minimizer
of P(x,0), where

0" =[]l = ml.aXI/Y{I

2025/2/21
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Exact Penalty Methods

More practical: linearizing this model as a subproblem

v ) = f(2) + V@) o+ S W

[Z ci(z) + Vei(z) p| + Z[CT’ + Vei(z) 'p)~ ] (28)

1€E =

Smooth quadratic programming problem

prgigt f@)+5p"Wp+ V(@) p+udlce (ritsi) +udcrti

S.t. VCZ' (QC)TP + C@(-CE) — Ty — Si, e & (29)
Vei(x)'p+ei(z)<t;, i€l
r,s,t >0
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Augmented Lagrangian Method

« Case 1: equality-constrained problem

Lo(x,0) = f(x) + D Nei(x) + 5 3 () (30)

€& 1e€
Given gy, 4%, the minimal point x**1 s t.:

VaLle, (XkJrl, )\k) =Vf (ka) + Z ()\,’;‘c + orc; (xk+1)) Ve; (XkH) =0 (31)

1e€
Comparing to eq(21), obtain
AAHL X 2 A o (xFT) Vi e € (32)

AF— Mk

o, = o is not necessary. ¢, (x’fﬂ) —
Ok

(33)
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Augmented Lagrangian Method

Algorithm:

1: Given x°,1°,0, > 0,6 > 0,n >0,k =0
2:fork=0,1,..do

3: xM1=argminL, (x,2%), s.t. ||V, Ly, (x*¥*1,2%)|| < i

X
4: if||c(x**Y)|| < e & < 7 then
5 return (x**1,2;)
6: end do
7:  endif
8: Al =%+ gpc(x**1), 0441 = poy, decrease 7y .
9: end for
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Augmented Lagrangian Method

« Case 2: general constrained problem

Introducing slack variables s;:

min  f(x)
st. ¢i(x)=0,1€f& (34)
ci(x)+s;,=0,j€T
s; > 0,12 € L.
Preserving non- negative constraints
L(XSA/*L +Z/\Cz +Z/~Lz Cz +Sz —|—2p(X8)
1e& i€l
si>0,iel. (35)
Where p(x,s) is quadratic penalty function(constraint violating
measurement)
plx.s) = D cF(0)+ ) _(eilx
1€E €L
xF Zc xFt+1l) + Z (c;(x k“ (36)
1€E €L
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Augmented Lagrangian Method

In step-k, given A%, u* and o*, to get x**1, sk+1,

min L, (X,S,)\k,uk) , st. s>0 (37)

X, R

Fix x, subproblem about s:

min Z /J”L Cz '|' 81 + 7 Z(C@(:E) + 873)2 (38)
s20 1€ 1€XL
Solution: S; = max {—— —¢;(x), O}
Simplify:
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Augmented Lagrangian Method

Update Multipliers
KKT conditions:
0=VF@)+> NVe (@) + > wiVei(z), pf>0,s5>0i€e€l (41)
€€ €L
For Xk+1 Sk+1

c ()\f + oLC; ($k+1)) Ve (a;kH) +
Yier (15 4+ on (e (z1) + 5771)) Ve (a7

(42)
sf+1 = max{—g—z — ¢ (:L‘k"'l) ,0} , 1€,
Obviously,
/\iﬁ_l = )\f -+ Ukci(xk_‘_l), 1€ €&,
pi = max{p¥ + ope;(x11),0}, i€z (43)
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Augmented Lagrangian Method

1: Given x%,1%,6%e>0,n>00<a<p<landp>1.letn’ =

Algorithm:

1/a§.
2:fork=0,1,2,..
3:

4:  if v (x**1) < g then
5: if v (xF+1) < e & ||VxLak(xk+1,/1k,uk)||2 <7
6: return (x**1,2% u*) end do
7 end if
8: At =2kt o cl(xk“) uitt = max{uf + g (x**1), 0},0141 = 0
9: Nk+1 = Gn_k Ek+1 = B_°
k+1 O-k+1
10:  else 2**" = 2%, 0441 = POk, Mis1 = ;:ek+1 =
Ok+1
11: end if
12: end for

do

g0’

x**1 = argmin Lg, (%, 4%, 1 ) st [|[Vo Lo, (x5, 245 1) || < m
X
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Conclusion

» Introduce the constraint qualification and give the
optimality conditions of constrained optimization

» the penalty methods which convert the constraint
problem to constraint problem and analysis the
convergence using optimality conditions.

» Talk about a more practical penalty method: the
augmented Lagrangian method for equality and
Inequality constrained case.

» Optimality conditions will give us the update step of
parameters. For inequality case, we simplify this problem
with slack variables.
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Thank you and any questions
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