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Invariantly Characterize Numerical Spacetimes

Abstract: This topic will cover the fundamental concepts related to the 

invariants characterizing numerical spacetimes. Initially, I intend to elucidate 

the methodology employed in computing the electric and magnetic 

components of the Weyl tensor through the utilization of the 3+1 slicing 

formulation. And the presentation will include an exploration of the 

relationship between the Weyl scalar and the electric and magnetic 

components in terms of null tetrad basis.  Finally, the Petrov classification and 

fundamental invariants are presented.
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Motivation

➢ In recent years, it has become increasingly common in numerical
relativity to extract gravitational wave information in terms of the
components of the Weyl curvature tensor with respect to a frame of null
vectors, using what is known as the Newman–Penrose formalism.

➢ They can be used to compare a numerical solution to an exact solution,
or two numerical solutions corresponding to the same physical system
but computed in different gauges.
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3+1 slicing 

Consider the 3+1 formalism:

This foliates the spacetime into spatial hypersurfaces with a spatial metric 𝛾𝛼𝛽 

and a normal unit timelike vector 𝑛𝛼: 𝑛𝛼𝑛𝛼 = −1 and 𝑛𝛼𝛾𝛼𝛽 = 0.

The time coordinate is chosen such that it is constant on each of the spatial 

slices, covered by the space coordinates, thereby defining coordinates adapted 

to the foliation. Each time slice is mapped to the next by the lapse function 𝛼 

and the shift vector 𝛽𝜇.

In this foliation-adapted coordinates, we can choose 𝑛𝜇 = −𝛼, 0,0,0 and 

𝑛𝜇 = Τ1 𝛼 , Τ−𝛽𝑖 𝛼 , 𝛽𝜇 = 0, 𝛽𝑖  and 𝛽𝜇 = 𝛽𝑘𝛽𝑘 , 𝛽𝑗 with 𝛽𝑖 = 𝛾𝑖𝑗𝛽𝑗. So, 

the spacetime metric 𝑔𝜇𝜈 and spatial metric 𝛾𝜇𝜈 :
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3+1 slicing 

The evolution of 𝛾𝛼𝛽 is given by the extrinsic curvature, where ℒ𝒏

represents the Lie derivative along 𝑛𝜇. We can write

orthogonal to 𝑛𝛼: 𝑛𝛼𝐾𝛼𝛽 = 0

Observably, the spatial metric 𝛾𝛼𝛽 and extrinsic curvature 𝐾𝛼𝛽 cannot be 

chosen arbitrarily. Instead, they have to satisfy certain equations.
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3+1 slicing 

So, we can get the equivalent form of Einstein’s equations: coupled
evolution equations and the constraint equations:

where 

constraint 
equations

evolution 
equations
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Weyl tensor

The Riemann tensor has more independent components than the Ricci
tensor, which implies that it can be decomposed in terms of the Ricci and
an additional object known as the Weyl tensor, and defined for an n-
dimensional spacetime as

Moreover, we can also easily see that it is traceless,

Given an arbitrary timelike unit vector 𝑛𝜇, we define the electric 𝐸𝜇𝜈 and 

magnetic 𝐵𝜇𝜈 parts of the Weyl tensor as:

where 𝐶𝛼𝜇𝛽𝜈
∗  is the so-called dual Weyl tensor:
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Weyl tensor

If we now take the vector 𝑛µ to be the unit normal vector to the spacelike
hypersurfaces in the 3+1 formalism, we can write the electric and magnetic
tensors in 3+1 formalism as

where 𝐷𝑚 is 3-dimensional covariant derivative.

Further more, 𝐸𝑖𝑗 and 𝐵𝑖𝑗 are symmetry and traceless,     

And the Weyl tensor can be decomposed as,

where 𝑙𝜇𝜈 ≔ 𝑔𝜇𝜈 + 2𝑛𝜇𝑛𝜈. 
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The tetrad formalism

Up to this point we have assumed that the components of tensors are

always expressed in terms of a coordinate basis Ԧ𝑒𝜇 . However, in many

cases it is particularly useful to work instead with a basis that is
independent of the coordinates.

At every point of spacetime, consider a set of four linearly independent

vectors Ԧ𝑒 𝑎 , such that,

with 𝜂 𝑎 𝑏  is a  constant matrix independent of the position in spacetime. 

In such a case the set of vectors Ԧ𝑒 𝑎  is called a tetrad.

So the tensor components can be expressed in the tetrad basis. For example, 

for a rank 2 tensor we have
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The tetrad formalism

Basically,  covariant derivatives can be express in terms of the tetrad basis 
as

where 

We then see that the 𝛾 𝑎 𝑏
𝑐

 are nothing more than the connection 

coefficients in the tetrad basis.

According to the equation(21) 

Obviously, 
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The tetrad formalism

Advantages of tetrad:

➢ the tetrad components of any geometric object behave as scalars with 

respect to coordinate changes.

➢ This means that in a general four-dimensional spacetime there are only 

24 independent 𝛾(𝑎)(𝑏)(𝑐), which is in contrast with the 40 independent 

components of the Christoffel symbols Γ𝜇𝜈
𝛼 in a coordinate basis.
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The Newman–Penrose tetrad

The basic idea of the Newman–Penrose formalism is to introduce a tetrad
of null vectors.

Typically, we choose the vector 𝑒 0
𝜇

as the unit normal to the spatial

hypersurfaces 𝑒 0
𝜇

= 𝑛𝜇 , 𝑒 1
𝜇

as the unit radial vector in spherical

coordinates, and 𝑒 2
𝜇

, 𝑒 3
𝜇

as unit vectors in the angular directions. Once

we have an orthonormal basis, we can construct the four null vectors:

what is known as a null tetrad, such as

Real Vectors

Complex Vectors
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The Newman–Penrose tetrad

The definition of the null tetrad 𝑙𝜇 , 𝑘𝜇, 𝑚𝜇, ഥ𝑚𝜇 is based on the choice of

the original orthonormal tetrad Ԧ𝑒 𝑎 . Such transformations are usually

separated into three distinct classes:

1.Every proper orthonormal Lorentz transformation leaves at least one null direction invariant.

➢ Null rotations of class I which leave the vector 𝑙𝜇 unchanged1:

➢ Null rotations of class II which leave the vector 𝑘𝜇 unchanged:

➢ Null rotations of class III which leave the directions of 𝑙𝜇 and 𝑘𝜇 and 

the product 𝑙𝜇𝑘𝜇 unchanged:
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The Weyl scalars

As we have seen, the Weyl tensor has, in general, 10 independent
components. In the Newman–Penrose formalism those components can be
conveniently represented by five complex scalar quantities known as the
Weyl scalars, and defined as

Using the definition of the electric and magnetic parts of the Weyl tensor

with 𝑄𝑖𝑗 = 𝐸𝑖𝑗 − 𝑖𝐵𝑖𝑗, and where Ԧ𝑒𝑟 is the unit radial vector.
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The Weyl scalars

We can also invert these relations to express 𝑄𝑖𝑗 in terms of the Ψ𝑎,

symmetry

traceless

The expressions given above for the Ψa  in terms of the electric and 

magnetic tensors provide us with a particularly simple way of calculating 

these scalars in the 3+1 approach: We start from the 3+1 expressions for 𝐸𝑖𝑗 

and 𝐵𝑖𝑗 and then use these tensors to construct the Ψa.
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Petrov classification

Notice first that the Weyl tensor can be completely specified in terms of the
five scalars Ψ𝑎. On the other hand, the Ψ𝑎 clearly depend on the choice of
tetrad. We can then ask if it is possible to make a transformation of the
tetrad that will result in one or more of the Ψ𝑎 becoming zero.

For a class I transformation the different Weyl scalars can be shown to
transform as,

Similarly, under a class II transformation we find that
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Petrov classification

Let us concentrate now on the class II transformations. It is clear that after
such a transformation we can make Ψ0 vanish as long as we choose the
parameter 𝑏 as one of the roots of the following quartic equation,

This leads to the Petrov classification that separates different spacetimes 

into six types according to the number of distinct root of (44),

➢ Petrov type I: All four roots are distinct: 𝑏1, 𝑏2, 𝑏3, 𝑏4.

Ψ𝑠

𝑇𝑟𝑎𝑛𝑠.II
Ψ0 = 0

𝑇𝑟𝑎𝑛𝑠.I
Ψ4 = 0 ⇒ Ψ1, Ψ2, Ψ3 ≠ 0

➢ Petrov type II: Two roots coincide: 𝑏1  =  𝑏2, 𝑏3, 𝑏4.

Ψ𝑠

𝑇𝑟𝑎𝑛𝑠.II
Ψ0 = Ψ1 = 0

𝑇𝑟𝑎𝑛𝑠.I
Ψ4 = 0 ⇒ Ψ2, Ψ3 ≠ 0

➢ Petrov type III: Three roots coincide: 𝑏1  =  𝑏2  =  𝑏3, 𝑏4.

Ψ𝑠

𝑇𝑟𝑎𝑛𝑠.II
Ψ0 = Ψ1 = Ψ2 = 0

𝑇𝑟𝑎𝑛𝑠.I
Ψ4 = 0 ⇒ Ψ3 ≠ 0

➢ Petrov type N: All four roots coincide: 𝑏1  =  𝑏2  =  𝑏3  =  𝑏4.

Ψ𝑠

𝑇𝑟𝑎𝑛𝑠.II
Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 ⇒ Ψ4 ≠ 0

➢ Petrov type D: Two pairs of roots coincide: 𝑏1  =  𝑏2, 𝑏3  =  𝑏4.

Ψ𝑠

𝑇𝑟𝑎𝑛𝑠.II
Ψ0 = Ψ1 = 0

𝑇𝑟𝑎𝑛𝑠.I
Ψ4 = Ψ3 = 0 ⇒ Ψ2 ≠ 0

➢ Petrov type O: The Weyl tensor vanishes identically.
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Spacetime Invariants

Two fundamental complex quantities commonly known as the I and J
scalars and defined as,

where 𝒞𝛼𝛽𝜇𝜈 ≔ 𝐶𝛼𝛽𝜇𝜈 − 𝑖𝐶𝛼𝛽𝜇𝜈
∗ /4.

The above expressions can be rewritten in terms of the electric and 
magnetic parts of Weyl tensor as
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Spacetime Invariants

At the same time, we rewrite I and J in terms of the Weyl scalars Ψ𝑎: 

Invariants can be used to compare a numerical solution to an exact solution, 

or two numerical solutions corresponding to the same physical system but 

computed in different gauges.
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Spacetime Invariants

For Petrov type D spacetimes like Schwarzschild and Kerr, the only non-
zero Weyl scalar is Ψ2. So we have

so that for a type D spacetime we will always have 𝐼3 = 27𝐽2, regardless 

of the choice of tetrad. For spacetimes of types III and N we have 𝐼 =  𝐽 =
 0.
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Spacetime Invariants

Further scalar invariants are defined as

According to the Petrov classification, we have an equivalent form 
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Summarize

➢ Show the advantages of choosing a tetrad basis. 

➢ Construct the relation between the electric and magnetic parts and the 
Weyl scalars and the invariants.

➢ Provide the classification of spacetimes.
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Thank you for your attention and the 
questions
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